Numerical Investigation of Nozzle Shape Effect on Shock Wave in Natural Gas Processing
نویسنده
چکیده
Natural gas flow contains undesirable solid particles, liquid condensation, and/or oil droplets and requires reliable removing equipment to perform filtration. Recent natural gas processing applications are demanded compactness and reliability of process equipment. Since conventional means are sophisticated in design, poor in efficiency, and continue lacking robust, a supersonic nozzle has been introduced as an alternative means to meet such demands. A 3-D Convergent-Divergent Nozzle is simulated using commercial Code for pressure ratio (NPR) varies from 1.2 to 2. Six different shapes of nozzle are numerically examined to illustrate the position of shock-wave as such spot could be considered as a benchmark of particle separation. Rectangle, triangle, circular, elliptical, pentagon, and hexagon nozzles are simulated using Fluent Code with all have same cross-sectional area. The simple one-dimensional inviscid theory does not describe the actual features of fluid flow precisely as it ignores the impact of nozzle configuration on the flow properties. CFD Simulation results, however, show that nozzle geometry influences the flow structures including location of shock wave. The CFD analysis predicts shock appearance when p01/pa>1.2 for almost all geometry and locates at the lower area ratio (Ae/At). Simulation results showed that shock wave in Elliptical nozzle has the farthest distance from the throat among the others at relatively small NPR. As NPR increases, hexagon would be the farthest. The numerical result is compared with available experimental data and has shown good agreement in terms of shock location and flow structure. Keywords—CFD, Particle Separation, Shock wave, Supersonic Nozzle.
منابع مشابه
Numerical Investigation in the Effect of Number of Nozzle Hole on Performance and Emission in Dual Fuel Engine
Air pollution is one of the major issues about the diesel engines in todays' world. It is a special concern in those areas that have difficulty meeting health-based outdoor air quality standards. Natural gas has low emission and resource abundance and also conventional compression ignition engine can be easily converted to a dual fuel mode to use natural gas as main fuel and diesel as pilot ...
متن کاملFavorable Plug Shape of an Aerospike Nozzle in Design, Over and Under Expansion Conditions
The influence of the plug shape on the performance of an aerospike nozzle thrust force is studied in different back pressure conditions. To generate smooth plug contours, Cubic B-Spline technique is employed. In the current research, basis functions are obtained using Deboor’s relation. The flow field around the aerospike nozzle is investigated implementing various shapes and the best of the ge...
متن کاملInvestigating the Effects of Inlet Conditions and Nozzle Geometry on the Performance of Supersonic Separator Used for Natural Gas Dehumidification
Supersonic separators have found extensive applications in dehumidification of natural gases since 2003. Unlike previous studies, which have investigated the inlet conditions and nozzle geometry of supersonic separators for pure fluids, the present study employed a combination of momentum, heat, and mass transfer equations along with Virial equation of state (EOS) to inspect the effect of inlet...
متن کاملNumerical Simulation of Gas Jet Effects in Laser Machining
In this paper, the interaction of a transonic, turbulent axisymmetric jet with the workpiece is studied. Numerical simulations are carried out using an explicit, coupled solution algorithm with solution-based mesh adaptation. Effect of gas pressure and nozzle standoff distance on structure of the supersonic shock pattern is studied. Experiments are carried out to study the effect of processing ...
متن کامل